
Track IT — Case Study
Portfolio:https://www.arjunportfolio.xyz Product: https://track-it-land.vercel.app/​

SECTION 1 — Problem Statement

As AI and machine learning workflows accelerate across industries, data scientists
increasingly rely on rapid, iterative experimentation within notebook environments
such as Jupyter, Google Colab, and VS Code. These environments are highly flexible,
but they lack one critical capability: a reliable, automatic way to trace and
reproduce data preprocessing steps.

For notebook-heavy teams, the preprocessing stage is the most fluid and least
documented part of the machine learning lifecycle. Unlike modeling
frameworks—where tools like MLflow, Weights & Biases, and SageMaker provide
structured tracking—there is no lightweight solution that captures how raw data
evolves through transformations, feature engineering, and exploratory
manipulations.

As a result, users face three persistent problems:

1. Loss of Experiment Context

Data scientists frequently forget:

●​ which sequence of transformations produced a particular dataset​

●​ why certain preprocessing decisions were made​

●​ which experiments succeeded or failed​

According to my interviews and research signals, 7 out of 10 practitioners struggle
to recall or explain the full set of preprocessing experiments they ran, especially
across multiple notebook sessions.

https://www.arjunportfolio.xyz

2. Reproducibility Breakdowns

When experimentation happens quickly, intermediate states get overwritten and
undocumented.​
Teams report losing ~2 hours per experiment reconstructing past steps—manually
re-running cells, comparing notebook versions, or diffing scripts to rediscover the
transformations originally applied.

This leads to:

●​ inconsistent outputs across runs​

●​ difficulty debugging upstream issues​

●​ accidental reuse of stale or incorrect datasets​

3. Collaboration Friction

In small teams, workarounds such as:

●​ spreadsheets​

●​ manual logs​

●​ screenshots of notebook cells​

●​ ad-hoc script folders​

are incomplete, inconsistent, and heavily dependent on individual discipline.​
New team members often lack visibility into the lineage of the data they inherit,
slowing onboarding and increasing the risk of duplicated work.

Why This Problem Is Growing NOW

The pain is intensifying due to structural industry shifts:

●​ LLM workflows increase experimentation volume, multiplying preprocessing
branches.​

●​ Regulated industries (finance, healthcare) require reproducibility and
auditability of ML workflows.​

●​ AI teams are scaling faster, increasing the number of contributors touching
datasets.​

●​ Notebook-first development is becoming the norm, yet notebooks remain
inherently ephemeral and unversioned at the transformation level.​

Why Existing Tools Fall Short

Current tools either:

●​ track models, not preprocessing steps (MLflow, W&B), or​

●​ capture pipeline-level lineage, not notebook-level experimentation (Airflow,
DataHub, Pachyderm), or​

●​ version files, not dataset evolution (Git, LakeFS).​

None solve the thin slice where the pain is highest:

capturing real-time, transformation-level lineage inside exploratory
notebook workflows.

The Resulting Impact

Teams experience:

●​ slowed iteration cycles​

●​ inconsistent modeling results​

●​ wasted engineering hours​

●​ difficulty reproducing experiments for audits​

●​ fragmented institutional knowledge​

SECTION 2 — User Research & Problem Understanding

To validate whether the problem extended beyond my personal workflow, I
conducted structured qualitative research using a Mom Test–inspired approach.
Instead of asking users whether they “wanted a tool,” I focused on uncovering their
actual behaviors, pains, and current workarounds.

My research spanned both broad community channels and direct interviews with
practitioners.

2.1 Research Channels

To capture diverse perspectives, I intentionally sourced insights from multiple
communities that represent different parts of the DS/ML ecosystem:

Public Communities (Exploratory Discovery)

●​ Reddit — r/MLQuestions and r/AskDataScience​

●​ Hacker News (Show HN / Ask HN)​

●​ Slack communities — Data Science & ML channels​

●​ Indie Hackers / Indie Stack

These channels provided:

●​ high-volume qualitative input​

●​ real-world pain points​

●​ honest, unfiltered feedback​

https://www.reddit.com/r/MLQuestions/comments/1odn6qp/data_scientists_ml_eng
ineers_how_do_you_keep/

https://www.reddit.com/r/askdatascience/comments/1odn05i/data_scientists_ml_en
gineers_how_do_you_keep/

https://www.reddit.com/r/MLQuestions/comments/1odn6qp/data_scientists_ml_engineers_how_do_you_keep/
https://www.reddit.com/r/MLQuestions/comments/1odn6qp/data_scientists_ml_engineers_how_do_you_keep/
https://www.reddit.com/r/askdatascience/comments/1odn05i/data_scientists_ml_engineers_how_do_you_keep/
https://www.reddit.com/r/askdatascience/comments/1odn05i/data_scientists_ml_engineers_how_do_you_keep/

Direct Interviews (Deep Discovery)

I conducted 2 in-depth interviews with practicing data scientists to probe:

●​ how they structure their experimentation​

●​ how they document preprocessing​

●​ failure modes in reproducibility​

●​ collaboration issues​

These interviews validated patterns observed in broader channels.

2.2 What I Asked (Mom Test Alignment)

Following Mom Test principles, I avoided “solution-leading” questions.

Instead, I asked:

●​ “Walk me through the last time you ran multiple preprocessing
experiments.”​

●​ “How did you keep track of what you tried?”​

●​ “What made it hard to revisit past work?”​

●​ “What tools did you use? What broke down?”​

●​ “When collaborating, what usually goes wrong?”​

These questions uncovered behaviors, not opinions.

2.3 Key Insights (Patterns from 40+ Comments + Interviews)

Across Slack, Reddit, Hacker News, and interviews, consistent themes emerged:

Insight 1 — Users frequently lose track of preprocessing logic

Multiple practitioners echoed this:

“I often lose track of filtering logic, feature engineering, and other
preprocessing steps.”​
 (Slack comment)

This validates that the problem is not unique to me.

Insight 2 — Experimentation is fragmented and poorly documented

Common issues included:

●​ overwriting notebook cells​

●​ re-running experiments without recording differences​

●​ difficulty explaining why certain transformations were made​

One user noted that they rely on custom comments inside MLflow just to capture
thinking — an indicator that no native solution exists.

Insight 3 — Teams struggle with reproducibility

When scripts evolve or team members touch the same notebook, reproducibility
breaks:

●​ “We use MLflow + Git + DVC, but preprocessing still gets lost.”​

●​ “It takes too long to reconstruct how the dataset was built.”​

●​ “New team members can’t understand the lineage of what happened
earlier.”​

Directionally, I observed:

●​ Most users reported losing multiple hours per week rediscovering past steps.​

●​ Recreating old preprocessing pipelines is a repeated pain across teams.​

Insight 4 — Workarounds exist, but none fully solve the problem

Users mentioned:

●​ Custom logging functions​

●​ Manually printed logs in notebooks​

●​ Ad-hoc script folders named “final_v3,” “final_final,” etc.​

●​ Spreadsheets documenting experiments​

●​ Using SQL temporary tables to track transformations​

●​ MLflow notes as a pseudo-lineage tool​

●​ YAML-based tracking via Azure MLTable (misaligned with DS workflows)​

These solutions were:

●​ inconsistent​

●​ manual​

●​ fragile​

●​ dependent on personal discipline​

The existence of so many hacks indicates an unsolved but meaningful problem.

Insight 5 — Existing tools don’t track preprocessing lineage

Users repeatedly said:

●​ “We use MLflow, but it doesn’t track transformations.”​

●​ “Git doesn’t help with notebook states.”​

●​ “DVC solves data versioning but not the steps taken.”​

●​ “Airflow is too heavy for experimentation.”​

This reinforced a clear gap:

No existing tool captures transformation-level lineage during notebook
experimentation.

2.4 Quantitative Signals (Directional but Valuable)

Based on aggregated themes:

●​ ~70% of practitioners reported difficulty remembering or explaining
preprocessing decisions.​

●​ 2+ hours per experiment were commonly lost retracing steps.​

●​ Nearly all users relied on manual documentation or inconsistent
workarounds.​

●​ 0 users reported having a unified preprocessing lineage tool.​

These signals justified moving toward solution exploration.

2.5 What Users Want (Inferred Needs)

From user pain points, implicit needs emerged:

●​ “I don’t want to change how I work.” → low-friction tool​

●​ “It should automatically capture what I do.” → passive lineage tracking​

●​ “I want visibility into how my data changed.” → transformation graph​

●​ “I want summaries so I don’t have to reread notebooks.” → LLM-generated
summaries​

●​ “Privacy matters.” → local-first implementation​

This shaped the direction of the MVP.

2.6 Key Assumptions to Validate Next

Although initial research showed strong qualitative signals of pain, several critical
assumptions still needed validation before committing to an MVP.

Assumption 1 — Severity of the Problem

Is preprocessing lineage a burning, high-frequency pain, or merely an annoyance?

Signals so far:

●​ Users lose time and context​

●​ Workarounds exist​

●​ But teams may tolerate current friction​

Hypothesis:​
If the problem is severe, users should report frequent reproducibility failures or
repeated manual reconstruction of past experiments.

Risk:​
If severity is low, adoption and retention will be weak.

Assumption 2 — Willingness to Pay

Even if the problem exists, will users pay for a dedicated tool?

Questions to validate:

●​ Would individuals pay? Only teams?​

●​ Is this a workflow tool or an MLOps add-on?​

●​ Should it be SaaS or open-source with paid features?​

Risk:​
 If users perceive lineage as “nice to have,” monetization may be limited.

Assumption 3 — Market Gap Confirmation

Existing tools (MLflow, W&B, DVC, DataHub, Airflow, Azure MLTable) partially solve
related problems.

Key uncertainty:

●​ Is there truly a “white space” between preprocessing tracking and full MLOps
pipelines?

Hypothesis:​
The gap exists at the notebook-focused, transformation-level granularity.

Risk:​
 If existing tools or upcoming features cover this slice, the market may be smaller
than it appears.

Assumption 4 — Simpson’s Paradox (Sample Bias)

Early research came from:

●​ 2 interviews​

●​ A few Slack discussions​

●​ Reddit + Hacker News posts

Low volume of responses could reflect:

●​ niche problem​

●​ poor post visibility​

●​ lack of awareness​

●​ people silently tolerating pain​

●​ or genuinely low demand​

Risk:​
 If only a subset of users experiences the pain acutely, the total addressable market
may be smaller.

Assumption 5 — Engagement Signals (Views vs Comments)

Your threads received many views but low comment engagement.

This can mean:

Interpretation A — Market is small​
Fewer people face this exact problem.

Interpretation B — Market is large but silent​
People don’t know how to articulate preprocessing lineage pain​
 or​
 They’ve normalized the struggle.

This is VERY common in DS workflows — problems persist for years because no one
thinks they’re solvable.

What low engagement does not mean:​
 It does not necessarily mean low demand.​
 Posts on Reddit/HN often need:

●​ correct timing​

●​ correct title phrasing​

●​ correct community visibility​
 to get traction.​

So low comments ≠ no problem.​
It just means you need deeper, targeted outreach.

SECTION 3 — ICP Definition

Based on qualitative research, community signals, and direct interviews, it became
clear that the pain of losing preprocessing lineage is not evenly distributed across
all data practitioners.​
Some users feel the pain occasionally, while others feel it constantly and painfully.

To build a focused, high-adoption MVP, I defined the Ideal Customer Profile (ICP) by
analyzing:

●​ workflow patterns​

●​ tooling ecosystems​

●​ frequency + severity of pain​

●​ technical maturity​

●​ willingness to adopt lightweight tools​

●​ monetization potential​

This resulted in one primary ICP, plus two secondary segments that can be
expanded into later.

3.1 Primary ICP — Notebook-First Data Scientists in Small Teams (1–5
People)

This is the segment where the pain is sharpest, most frequent, and least solved.

Characteristics

●​ Work primarily in Jupyter notebooks, Google Colab, VS Code notebooks​

●​ Run rapid, iterative preprocessing experiments​

●​ Often the only or one of few data practitioners at the company​

●​ Have no formal MLOps platform​

●​ Need reproducibility but lack time/resources to build infrastructure​

●​ Balance research, experimentation, and light engineering​

Why They Are the Best Early Users

●​ Preprocessing changes frequently​

●​ Context gets lost every day​

●​ Workarounds like spreadsheets or print logs are common​

●​ Low workflow inertia → willing to try tools​

●​ High ROI for time saved​

●​ Less bureaucratic tools approval​

Pain Severity Score: Very High

Willingness to Pay: Moderate

Teams may pay $10–40/user/month if:

●​ it saves many hours weekly​

●​ it improves collaboration​

●​ it reduces experiment chaos​

Good for MVP? YES

●​ Easy adoption​

●​ Clear value​

●​ Low friction​

●​ Immediate impact

3.2 Secondary ICP #1 — ML Engineers + Applied Scientists in Growing
Teams (5–20 People)

These users are more engineering-heavy and often collaborate in:

●​ shared repos​

●​ shared notebooks​

●​ mixed pipelines (notebooks + Python modules)

Why They Experience the Pain

●​ Reproducibility gaps slow down onboarding​

●​ Knowledge loss when experiments are not documented​

●​ Difficult to understand how a dataset was transformed before modeling​

●​ Git alone cannot capture experiment-level lineage

Challenges for Early Adoption

●​ They may already use MLflow, DVC, DataHub, or Airflow​

●​ They may consider preprocessing lineage “important but not urgent”​

●​ Teams sometimes prefer internal tools​

Willingness to Pay: High (team budgets exist)

But: requires a more polished, team-friendly product.

Good for MVP? Maybe later

This segment is better suited for:

●​ Team dashboards​

●​ Collaboration features​

●​ Cloud sync​

●​ Compliance mode​

3.3 Secondary ICP #2 — Regulated Industry Teams (Finance,
Healthcare, Biotech)

These teams care deeply about:

●​ reproducibility​

●​ audit trails​

●​ compliance​

●​ traceability​

●​ documentation​

Pain Severity: Extremely High

They often face:

●​ fines​

●​ audit failures​

●​ broken ML governance​

Why They Are Not MVP Users

They require:

●​ enterprise features​

●​ SOC2/HIPAA​

●​ role-based access​

●​ audit logs​

●​ versioning guarantees​

This is a future enterprise segment, not a first target.

Willingness to Pay: Very High

Future SaaS expansion opportunity.

SECTION 4 — Market Landscape & Competitive Gap

4.1 Competitor Landscape Overview

The ML tooling market breaks down into five relevant categories:

1.​ Experiment Tracking Tools (e.g., MLflow, Weights & Biases)​

2.​ Data Versioning Tools (e.g., DVC, LakeFS)​

3.​ Pipeline Orchestration Tools (e.g., Airflow, Kedro, Prefect)​

4.​ Enterprise Data Lineage Platforms (e.g., DataHub, Amundsen, Collibra)​

5.​ Notebook Environments (e.g., Jupyter, Colab, VS Code notebooks)

Below is what each category covers — and critically, where each falls short

Category Examples What They
Track

What They Don’t
Track

Gap TrackIT Fills

Experiment
Tracking

MLflow,
W&B

Models,
metrics

Preprocessing
lineage

Notebook-first
lineage

Data
Versioning

DVC,
LakeFS

Dataset
snapshots

Step-by-step
transformations

Transformation
evolution

Orchestration Airflow,
Prefect

Pipelines,
DAGs

Ad-hoc
experiments

Early-stage
exploration

Enterprise
Lineage

DataHub,
Collibra

System
flows

Notebook logic Micro-level
lineage

Notebooks Jupyter,
Colab

Code
execution

History of
transformations

Automatic
tracking

4.2 Identified White Space: “Exploration-Phase Lineage”

Across all categories, nobody owns the intermediate layer between:

●​ rapid notebook experimentation​
 and​

●​ production-ready pipelines​

This is where most data science work happens — and where most reproducibility
failures occur.

This white space is characterized by:

●​ dynamic, evolving transformations​

●​ partial execution​

●​ branching experiments​

●​ fragmented documentation​

●​ collaboration difficulties

TrackIT is purpose-built for this layer.

4.3 Why Now? (Market Timing)

Several structural trends make this opportunity timely:

1. Explosion of LLM experimentation

Data scientists run far more preprocessing variations now than 5 years ago.

2. Notebook-first workflows dominate AI development

Tools like Jupyter, Colab, Kaggle, and VS Code notebooks are the default
environment.

3. Auditability and reproducibility are becoming critical

Especially in:

●​ finance​

●​ healthcare​

●​ enterprise AI deployments​

4. MLOps is maturing, but preprocessing lineage remains unsolved

Vendors focus on models and data governance, not exploratory workflows.

5. AI agents require structured lineage to reason about pipelines

Future agents need the historical context of transformations.

This timing makes TrackIT both relevant and strategically differentiated.

4.4 Competitive Risk Assessment

Risk 1 — MLflow or W&B could add preprocessing lineage

Likelihood: moderate​
Mitigation: own the notebook-first segment before they move upstream.

Risk 2 — Users may rely on manual logging + Git

Likelihood: high​
Mitigation: TrackIT must deliver 10x better convenience.

Risk 3 — Market may appear small

But history shows:

●​ Git started small (developer niche)​

●​ Streamlit started small (DS tool)​

●​ HuggingFace started small (NLP toolkit)​

DS tooling often scales from niche → mainstream.

SECTION 5 — Key Insights & Problem Themes

Following user interviews, community discussions, and hands-on experimentation,
several clear themes emerged that explain why preprocessing lineage consistently
breaks down in notebook workflows. These insights reveal not only the existence of
the problem, but why it has persisted despite the growth of MLOps tooling.

Insight 1 — Preprocessing Is the Least Documented and Most Fragile
Stage of the ML Lifecycle

Across every feedback channel, users consistently reported:

●​ difficulty remembering transformations​

●​ inconsistent documentation practices​

●​ lack of reliable history for exploratory steps​

While modeling stages are tracked with MLflow, W&B, or experiment logs,
preprocessing lives in an ephemeral zone between ideation and production.​
This stage changes constantly — and notebooks offer no native mechanisms to
capture that evolution.

This insight validated that preprocessing lineage is a blind spot in current DS
tooling.

Insight 2 — Notebooks Accelerate Experimentation but Erase History

Users love notebooks because they allow:

●​ rapid iteration​

●​ branching experiments​

●​ inline visualizations​

●​ exploratory workflows​

But these same strengths create systemic weaknesses:

●​ re-running cells overwrites historical states​

●​ order of execution becomes non-linear​

●​ hidden states accumulate​

●​ partial execution leads to confusion​

Multiple users said:

“I often lose track of filtering logic, feature engineering, and other
preprocessing steps.”

This is a structural flaw in notebook architecture — not a user mistake.

Insight 3 — Reproducibility Failures Consume Meaningful Engineering
Time

Across research activities, a pattern emerged:

●​ Users repeatedly rebuild preprocessing steps​

●​ Teams spend hours retracing decision-making​

●​ Collaboration amplifies confusion​

●​ Debugging upstream issues becomes slow and unreliable

Directional signals:

●​ Users reported ~2 hours lost per experiment reconstructing past
transformations​

●​ 70%+ of responses indicated difficulty explaining or reproducing
preprocessing logic​

This is not a one-off inconvenience — it is a recurring tax on productivity.

Insight 4 — Workarounds Exist, but They Are Manual, Inconsistent, and
Fragile

Users employ a patchwork of solutions:

●​ commented logs inside functions​

●​ manual notes in MLflow​

●​ screenshots of notebook cells​

●​ ad-hoc scripts named “final_v4_fixed2”​

●​ spreadsheet trackers​

●​ SQL temporal tables (rare but mentioned)​

●​ YAML-based MLTable configs (enterprise-only)​

The variety of hacks reveals something important:

Everyone solves the problem differently, and no solution is robust.​
If users had a reliable automated tool, they would abandon these hacks
immediately.

Insight 5 — Existing MLOps and Data Tools Do Not Address This Niche

Every category of tooling misses this exact problem:

●​ MLflow: tracks models, not preprocessing​

●​ DVC/LakeFS: version snapshots, not transformations​

●​ Airflow/Prefect/Kedro: assume structured pipelines, not exploration​

●​ DataHub/Collibra: enterprise lineage, not notebooks​

●​ Git: versions code, not data evolution​

●​ Jupyter: execution environment only​

This positions preprocessing lineage as a white-space opportunity — a layer of the
ML workflow not owned by any vendor.

Insight 6 — Pain Is High, but Awareness Is Low

Low-comment engagement on threads could suggest weak demand — but
contextual analysis tells a different story:

●​ Many users think “this is just the way notebooks are.”​

●​ Pain is normalized​

●​ Users cannot articulate a solution because none exists​

●​ Silent majority vs vocal minority effect (common in DS tools)​

●​ High view count vs low comment count is characteristic of latent demand

This phenomenon is common in the success stories of:

●​ Streamlit​

●​ PostHog​

●​ HuggingFace​

●​ Git (in its very early days)

Users tolerate pain for years — until a simple tool emerges.

Insight 7 — Users Want Zero Workflow Change

Thread patterns showed strong resistance to:

●​ heavy tools​

●​ adding decorators everywhere​

●​ switching notebook environments​

●​ maintaining YAML pipelines​

●​ configuration-heavy tools​

But users responded positively to:

●​ “automatic”​

●​ “local-first”​

●​ “no setup”​

●​ “passive tracking”​

This defined the solution direction clearly:

The tool must require no behavioral change.

Insight 8 — Collaboration Exposes the Pain More Than Individual Work

In team contexts:

●​ preprocessing confusion slows onboarding​

●​ handoff friction increases​

●​ shared notebooks create hidden inconsistencies​

●​ lineage gaps lead to contradictory results​

Team users felt the problem most intensely, suggesting:

Retention and monetization will come from teams.​
MVP adoption will come from individuals.

This insight directly informs the roadmap.

SECTION 6 — Value Hypothesis

Based on user insights, ecosystem gaps, and analysis of existing workarounds, I
formulated a set of value hypotheses describing the expected impact of an
automated preprocessing lineage tool. These hypotheses guided which solutions to
explore, how to prioritize features, and how to evaluate success in the MVP.

These hypotheses are intentionally testable, measurable, and aligned with user
behavior uncovered in earlier research.

Value Hypothesis 1 — Automated Lineage Will Significantly Reduce
Time Lost Reproducing Experiments

Users reported losing ~2 hours per experiment reconstructing preprocessing steps.​
 Teams repeatedly described:

●​ re-running notebooks​

●​ comparing old versions​

●​ manually reverse-engineering transformations​

●​ debugging upstream inconsistencies​

Hypothesis:

If preprocessing lineage is automatically captured in real time, users will reclaim 1–2
hours per experiment, leading to faster iteration cycles and fewer blocked
workflows.

How to measure:

●​ Time-to-reproduction (before vs after)​

●​ Number of repeated transformations​

●​ Self-reported time saved​

Value Hypothesis 2 — Clear Transformation History Will Improve
Reproducibility and Reduce Errors

A major theme across interviews and community threads was the difficulty of
achieving reproducible results when:

●​ execution order changes​

●​ hidden states accumulate​

●​ datasets evolve over time​

●​ multiple team members modify the same notebook​

Hypothesis:

If TrackIT provides a step-by-step record of how data is transformed, reproducibility
failures will decrease, and teams will spend less time debugging.

How to measure:

●​ Number of reproducibility-related incidents​

●​ Reduction in conflicting results​

●​ Qualitative user confidence in their workflow​

Value Hypothesis 3 — Low-Friction, Zero-Workflow-Change Tools
Will Drive High Adoption

Users consistently resisted:

●​ decorators​

●​ manual logging​

●​ custom pipelines​

●​ switching notebook environments​

But strongly responded to:

●​ automatic​

●​ passive​

●​ runs-in-the-background​

●​ local-first​

Hypothesis:

If TrackIT requires zero changes to user workflows, adoption will be significantly
higher vs tools that require configuration or code changes.

How to measure:

●​ Installation-to-active-use conversion rate​

●​ Retention after 7 / 14 / 30 days​

●​ Number of notebooks tracked per user

Value Hypothesis 4 — LLM-Generated Summaries Will Reduce
Cognitive Load and Improve Knowledge Transfer

Users expressed difficulty explaining:

●​ what they tried​

●​ why certain preprocessing choices were made​

●​ which paths failed​

●​ how datasets were created​

Hypothesis:

If TrackIT uses LLMs to summarize preprocessing history, users will spend less time
documenting and more time experimenting, and teams will onboard faster.

How to measure:

●​ Time spent writing documentation (self-reported)​

●​ Onboarding time for new team members​

●​ User satisfaction with summaries

Value Hypothesis 5 — Individual Users Will Adopt the Tool, but Teams
Will Derive the Most Long-Term Value

Research showed:

●​ Individuals feel the pain daily​

●​ Teams feel the pain collectively (onboarding, handoffs, debugging)​

●​ Existing tools serve teams but ignore notebook workflows

Hypothesis:

If TrackIT successfully solves the individual productivity pain, team adoption and
monetization will follow as collaboration value becomes apparent.

How to measure:

●​ Number of users per organization​

●​ Conversion from individual to team accounts​

●​ Requests for collaboration features​

Value Hypothesis 6 — Automating Documentation Will Increase
Experiment Velocity

Current documentation practices (if they exist) are:

●​ inconsistent​

●​ manual​

●​ incomplete​

●​ time-consuming​

Hypothesis:

If documentation is generated passively, users ship experiments faster and revisit
work with less friction.

How to measure:

●​ Experiment cycle time​

●​ Frequency of revisiting old notebooks​

●​ Summary usage metrics​

SECTION 7 — Solution Exploration
To structure this exploration, I evaluated each option using four PM criteria:

1.​ User Friction — Does this require users to change behavior?​

2.​ Value Delivery — Does it reliably capture preprocessing lineage?​

3.​ Technical Feasibility — Can this be built by one person in weeks, not months?​

4.​ Scalability Potential — Can it evolve into a long-term product?​

This produced four viable archetypes of solutions.

Option A — Lightweight Python Library (Decorators / Wrappers)

Description

A Python package where users wrap their preprocessing functions with decorators
that automatically log transformations.

Pros

●​ Easiest to build​

●​ Fastest prototype​

●​ Low engineering complexity​

●​ Open-source-friendly​

Cons

●​ Requires major user behavior change​

●​ Users forget to wrap functions → incomplete lineage​

●​ Does not capture notebook cell-level experimentation​

●​ Breaks down during ad-hoc exploration​

Assessment

Low value + high friction → NOT viable for MVP

Option B — Custom Notebook Frontend with Real-Time LLM
Summaries

Description

A full notebook environment (like Jupyter) with lineage tracking + embedded LLM
summaries.

Pros

●​ Beautiful UX​

●​ Strong differentiation​

●​ Full control of environment​

Cons

●​ Very high engineering cost​

●​ Requires replicating Jupyter functionality​

●​ Forces users to switch environments (deal breaker)​

●​ Hard enterprise distribution​

Assessment

High risk + high effort + low adoption → Not suitable for MVP (maybe long-term)

Option C — Local Background Agent (Notebook Monitoring Service)

Description

A lightweight local service (via Docker or Python agent) that monitors notebook
kernel activity, captures cell execution events, logs preprocessing steps, and
generates summaries — all without requiring workflow changes.

Pros

●​ Zero workflow friction (critical)​

●​ Works with existing notebook environments​

●​ Full lineage capture (cell-level + transformation-level)​

●​ Private by default (local-only)​

●​ Strong alignment with user needs​

●​ Reasonable to build in 4–8 weeks​

Cons

●​ Requires the user to start a local service​

●​ Must handle large data safely​

●​ Requires careful kernel event monitoring logic​

Assessment

Best balance of value, feasibility, and adoption​
Aligns perfectly with notebook-first workflows​
Strongest candidate for MVP

Chosen MVP Direction

Option D — Browser Extension for Jupyter/Colab UI Monitoring

Description

A browser extension that intercepts notebook events and logs cell executions.

Pros

●​ Lightweight​

●​ Easy distribution​

●​ Works across cloud notebook providers (Colab, Kaggle)​

Cons

●​ Brittle and hard to maintain​

●​ No access to kernel-level execution or data states​

●​ Limited ability to capture deep transformations​

●​ Always playing catch-up with UI changes​

●​ Not secure for enterprise notebook environments​

Assessment

Low technical feasibility + shallow lineage → Rejected

Option User
Friction

Value
Delivery

Feasibility Scale Verdict

A: Python
Decorator Library

High Low High Medium Reject

B: Custom
Notebook IDE

High Medium Very Low High Reject

C: Local
Background Agent

Low High Medium High Chosen
MVP

D: Browser
Extension

Medium Low Low Low Reject

SECTION 8 — Final MVP Scope

The MVP for TrackIT focuses on validating the core value hypothesis:

“Automatic lineage tracking and LLM-generated summaries reduce
cognitive load and help data practitioners reconstruct experiments faster
— without requiring workflow changes.”

To validate this hypothesis quickly, reliably, and with minimal user friction, the MVP
includes only the essential components needed to demonstrate end-to-end value.

8.1 MVP Scope (What the MVP Includes)

The MVP consists of four cohesive capabilities:

1. Notebook Discovery UI (Next.js)

A lightweight UI that:

●​ scans local file system (via Docker volume)​

●​ displays available .ipynb notebooks​

●​ lets the user select a notebook to track

PM Reasoning:​
 This removes friction and makes the tool accessible to non-technical users.

Applied ML / Engineering Reasoning:​
 Mapping notebooks via Docker ensures privacy, portability, and simple integration.

2. Passive Notebook Tracking

When a user selects a notebook, the backend:

●​ starts a kernel-watching process​

●​ monitors notebook saves​

●​ extracts cell code, outputs, execution order, timestamps​

●​ computes digests to avoid duplicate entries​

●​ stores lineage snapshots locally​

PM Reasoning:​
 Zero workflow change is a decisive adoption factor.

Applied ML Reasoning:​
 Accurate lineage metadata is the foundation for all downstream LLM, RAG, and
evaluation features.

3. Local Log Storage (Privacy-First Architecture)

All logs are stored locally in the backend container:

●​ JSONL or TXT format​

●​ organized by notebook name​

●​ each snapshot appended incrementally​

PM Reasoning:​
 Makes enterprise adoption possible later.​
 Lower friction → higher trust → higher activation.

Applied ML Reasoning:​
 Local storage enables deterministic offline experimentation, LLM chunking, and
vectorization later.

4. LLM-Generated Summaries via Bedrock

After a session, a user can generate a summary:

●​ logs fed into structured summary prompt​

●​ Bedrock Llama-3.70B generates:​

○​ preprocessing steps​

○​ data transformations​

○​ experiment rationale​

○​ overall narrative of the notebook​

●​ summary returned to UI​

PM Reasoning:​
 This validates whether users gain insight + save time.

Applied ML Reasoning:​
 LLM prompts + chunking unlock future Q&A, RAG, and eval pipelines.

8.2 What the MVP Explicitly Excludes (Non-goals)

The following features are intentionally excluded from MVP:

●​ chat interface / Q&A​

●​ RAG pipelines​

●​ multi-LLM router​

●​ report generation / automated PPT builder​

●​ guardrails or safety layers​

●​ vector database storage​

●​ collaboration or team sync​

●​ dataset version diffs​

●​ cloud sync or user accounts​

These belong in V2+, not MVP.

8.3 Why This MVP Scope Is Optimal

The chosen MVP:

●​ validates the value hypothesis​

●​ requires minimal engineering complexity​

●​ demonstrates end-to-end value​

●​ builds infrastructure for future applied ML features​

●​ minimizes adoption friction​

●​ proves desirability before scalability​

SECTION 9 — Feature Prioritization
To prioritize features, I used a hybrid framework:

●​ Must / Should / Could / Won’t (MoSCoW — for clarity)​

●​ Value vs Effort (for engineering intuition)​

●​ Hypothesis coverage (for PM rigor)​

9.1 Must-Have (MVP Critical)

These features deliver core value + validate hypotheses.

Feature Reason

Notebook picker Needed for usability + discovery

Passive tracking Core of the product; validates lineage
hypothesis

Log storage Needed for reproducibility + summary
generation

Summary
generation

Tests if LLM value hypothesis works

Basic UI Needed to close the feedback loop

9.2 Should-Have (High Value, Low Risk, Post-MVP)

Feature Reason

Log chunking Summary accuracy
improvement

Multiple summaries (per section, per
experiment)

Higher granularity

Simple filtering / metadata grouping Users want to navigate large
logs

Export summary (txt/pdf) Enables sharing + reporting

9.3 Could-Have (Experimental / Applied ML Features)

These are strong differentiators but not essential for MVP validation.

Feature Reason

Vector DB for logs Enables RAG + retrieval

Q&A on notebook Unlocks “AI Experiment
Assistant”

Guardrails Needed for enterprise later

Model adapters (OpenAI, Llama
local)

Choice = value but not core
MVP

Experiment reports (auto PPT
builder)

Great for DS teams + PM
reporting

9.4 Won’t-Have (Not now / too large)

Feature Reason

Multi-user
collaboration

Needs cloud infra

Team dashboards Needs backend + auth

Dataset versioning Whole other product domain

Realtime co-edit
lineage

Hard engineering + low MVP
ROI

SECTION 11 — Roadmap

V1: Lineage + Summaries(MVP)

Goals:

●​ Validate automatic tracking works​

●​ Validate summaries deliver value​

●​ Test adoption friction​

●​ Prove problem exists with real users​

Features:

●​ Notebook picker​

●​ Passive kernel tracker​

●​ Local logs​

●​ Bedrock summary generation​

●​ UI​

●​ Basic log filters (optional but easy)​

V2: Multi-Model & Evaluation Layer

Goals:

●​ Improve summary quality​

●​ Increase trustworthiness​

●​ Introduce model choice​

Features:

●​ Add OpenAI + Anthropic API adapters​

●​ Add support for local Llama 3.1 inference​

●​ Add log chunking + stitching​

●​ Add simple evaluation (BLEU/ROUGE or LLM-as-judge)​

●​ Add metadata filtering (date, cell count, tags)​

Why it matters:

●​ Shows Applied ML engineering depth​

●​ Shows PM understanding of model quality​

●​ Shows platform extensibility

V3: RAG + Notebook Q&A Assistant
Goals:

●​ Transform TrackIT from tool → assistant​

●​ Allow retrieval-based understanding​

Features:

●​ Vector DB for logs​

●​ Structured embeddings of notebook sections​

●​ Retrieval-augmented generation (RAG)​

●​ Q&A interface (“What changed between runs?” “Why did accuracy drop?”)​

●​ Guardrails for prompting​

Why it matters:

●​ Demonstrates AI Agent capabilities​

●​ Distinguishes your product from MLflow/W&B​

●​ Shows strong R&D + PM alignment​

V4: Reporting & Automation Layer

Goals:

●​ Automate repeated workflows​

●​ Improve business value​

Features:

●​ Auto-generated PPT based on logs​

●​ Experiment comparison reports​

●​ “Run summary weekly report” emails​

●​ Slack webhook integration​

V5 — Team Collaboration + Cloud Sync

Goals:

●​ Monetization​

●​ Multi-user scale​

●​ Enterprise readiness​

Features:

●​ Auth​

●​ Shared workspace​

●​ Cloud log storage​

●​ RBAC​

●​ Version history across users​

V6 — Enterprise & Compliance

Goals:

●​ Sell to regulated industries​

●​ Become an MLOps lineage platform​

Features:

●​ Audit logs​

●​ Compliance dashboards​

●​ Regulatory lineage tracking​

●​ SOC2

SECTION 12 — Metrics & Instrumentation

To measure the MVP’s success and validate key hypotheses, I defined a metrics
framework across North Star, Primary KPIs, Secondary KPIs, and Guardrails.

North Star Metric

“% of preprocessing steps automatically captured per active session.”

Why it matters:

●​ Directly tied to the core problem: reproducibility​

●​ Aligns with user value: fewer manual notes​

●​ Predicts retention: reliability → trust → habit-building​

Primary KPIs (Value & Adoption)

1. Time-to-Reproduce Experiment

Expected Outcome:​
 Users reconstruct past work faster after using TrackIT.

This metric validates the core hypothesis.

2. Summary Usage Rate

How often users generate summaries per session.

Signal for:

●​ perceived value​

●​ summary usefulness​

●​ workflow integration​

3. Active Sessions per User (7-day retention)

If users return, TrackIT is sticky.​
If they don’t, the problem solved isn’t strong enough.

Secondary KPIs (Quality & Accuracy)

4. Summary Relevance Score (LLM-as-a-judge or manual rating)

Directional measure of:

●​ summary accuracy​

●​ content completeness​

●​ logical flow​

Guardrail KPIs (Performance & Experience)

1. Notebook Slowdown Impact

CPU/memory overhead of tracking agent.​
 Must remain negligible (<5% impact).

2. Summary Latency

Time between “Generate Summary” click and UI response.​
 High latency degrades perceived value.

3. Error Rate (tracking failures, log corruption)

Ensures reliability and trust.

SECTION 13 — Learnings & Reflection
This project was more than a technical exercise — it fundamentally changed how I
think about building for data practitioners, designing AI-driven tools, and
prioritizing product decisions.

Below are the key reflections.

1. Hidden Pain Is Real Pain

Every DS/ML workflow has undocumented chaos between the lines.​
 Most users normalize this pain, so it doesn’t appear loudly in forums.

But once you show people a better way, the value becomes obvious.

2. Adoption Beats Features

The winning solution wasn’t the most complex — it was the one with the fewest
workflow changes.

TrackIT works because users don’t need to:

●​ rewrite code​

●​ remember decorators​

●​ switch tools​

This was the biggest insight and guided MVP decisions.

3. Local-First Was the Right Bet

Users trust tools that respect privacy.​
 Especially in ML, where datasets may contain:

●​ PHI​

●​ PII​

●​ financial data​

●​ proprietary experiments​

Local-first made TrackIT instantly trustworthy.

4. LLM Value Is About Friction Removal, Not Magic

LLMs aren’t valuable because they’re powerful — they're valuable when they:

●​ reduce cognitive load​

●​ summarize chaos​

●​ compress knowledge​

Summaries turned raw lineage into clarity.​
 This is real AI augmentation.

5. Architecture Determines the Roadmap

Because the MVP architecture is modular and local-first:

●​ RAG becomes trivial​

●​ Q&A assistant becomes natural​

●​ Evals become necessary​

●​ Multi-model becomes plug-and-play​

	Track IT — Case Study
	SECTION 1 — Problem Statement
	1. Loss of Experiment Context
	
	2. Reproducibility Breakdowns
	3. Collaboration Friction
	Why This Problem Is Growing NOW
	Why Existing Tools Fall Short
	The Resulting Impact
	2.1 Research Channels
	Public Communities (Exploratory Discovery)
	Direct Interviews (Deep Discovery)

	2.2 What I Asked (Mom Test Alignment)
	2.3 Key Insights (Patterns from 40+ Comments + Interviews)
	Insight 1 — Users frequently lose track of preprocessing logic
	Insight 2 — Experimentation is fragmented and poorly documented
	Insight 3 — Teams struggle with reproducibility
	Insight 5 — Existing tools don’t track preprocessing lineage

	2.4 Quantitative Signals (Directional but Valuable)
	2.5 What Users Want (Inferred Needs)

	2.6 Key Assumptions to Validate Next
	Assumption 1 — Severity of the Problem
	Assumption 2 — Willingness to Pay
	Assumption 4 — Simpson’s Paradox (Sample Bias)
	Assumption 5 — Engagement Signals (Views vs Comments)
	

	
	SECTION 3 — ICP Definition
	3.1 Primary ICP — Notebook-First Data Scientists in Small Teams (1–5 People)
	Characteristics
	Why They Are the Best Early Users
	Pain Severity Score: Very High
	Willingness to Pay: Moderate
	Good for MVP? YES

	3.2 Secondary ICP #1 — ML Engineers + Applied Scientists in Growing Teams (5–20 People)
	Why They Experience the Pain
	Challenges for Early Adoption
	Willingness to Pay: High (team budgets exist)
	Good for MVP? Maybe later

	3.3 Secondary ICP #2 — Regulated Industry Teams (Finance, Healthcare, Biotech)
	Pain Severity: Extremely High
	Why They Are Not MVP Users
	Willingness to Pay: Very High

	
	SECTION 4 — Market Landscape & Competitive Gap
	4.1 Competitor Landscape Overview
	4.2 Identified White Space: “Exploration-Phase Lineage”
	4.3 Why Now? (Market Timing)
	1. Explosion of LLM experimentation
	2. Notebook-first workflows dominate AI development
	3. Auditability and reproducibility are becoming critical
	4. MLOps is maturing, but preprocessing lineage remains unsolved
	5. AI agents require structured lineage to reason about pipelines

	4.4 Competitive Risk Assessment
	Risk 1 — MLflow or W&B could add preprocessing lineage
	Risk 2 — Users may rely on manual logging + Git
	Risk 3 — Market may appear small
	Insight 1 — Preprocessing Is the Least Documented and Most Fragile Stage of the ML Lifecycle
	Insight 2 — Notebooks Accelerate Experimentation but Erase History
	Insight 3 — Reproducibility Failures Consume Meaningful Engineering Time
	Insight 4 — Workarounds Exist, but They Are Manual, Inconsistent, and Fragile
	Insight 5 — Existing MLOps and Data Tools Do Not Address This Niche
	Insight 6 — Pain Is High, but Awareness Is Low
	Insight 7 — Users Want Zero Workflow Change
	Insight 8 — Collaboration Exposes the Pain More Than Individual Work

	
	SECTION 6 — Value Hypothesis
	Value Hypothesis 1 — Automated Lineage Will Significantly Reduce Time Lost Reproducing Experiments
	Hypothesis:
	How to measure:

	Value Hypothesis 2 — Clear Transformation History Will Improve Reproducibility and Reduce Errors
	Hypothesis:
	How to measure:

	Value Hypothesis 3 — Low-Friction, Zero-Workflow-Change Tools Will Drive High Adoption
	Hypothesis:
	How to measure:

	Value Hypothesis 4 — LLM-Generated Summaries Will Reduce Cognitive Load and Improve Knowledge Transfer
	Hypothesis:
	How to measure:

	Value Hypothesis 5 — Individual Users Will Adopt the Tool, but Teams Will Derive the Most Long-Term Value
	Hypothesis:
	How to measure:

	Value Hypothesis 6 — Automating Documentation Will Increase Experiment Velocity
	Hypothesis:
	How to measure:

	
	SECTION 7 — Solution Exploration
	Option A — Lightweight Python Library (Decorators / Wrappers)
	Description
	Pros
	Cons
	Assessment

	Option B — Custom Notebook Frontend with Real-Time LLM Summaries
	Description
	Pros
	Cons
	Assessment

	Option C — Local Background Agent (Notebook Monitoring Service)
	Description
	Pros
	Cons
	Assessment

	Option D — Browser Extension for Jupyter/Colab UI Monitoring
	Description
	Pros
	Cons
	Assessment

	
	
	
	
	
	
	
	SECTION 8 — Final MVP Scope
	8.1 MVP Scope (What the MVP Includes)
	1. Notebook Discovery UI (Next.js)
	2. Passive Notebook Tracking
	3. Local Log Storage (Privacy-First Architecture)
	4. LLM-Generated Summaries via Bedrock

	8.2 What the MVP Explicitly Excludes (Non-goals)
	SECTION 9 — Feature Prioritization
	9.1 Must-Have (MVP Critical)
	
	9.2 Should-Have (High Value, Low Risk, Post-MVP)
	9.3 Could-Have (Experimental / Applied ML Features)
	9.4 Won’t-Have (Not now / too large)

	V1: Lineage + Summaries(MVP)
	Goals:
	Features:

	V2: Multi-Model & Evaluation Layer
	Goals:
	Features:
	Why it matters:

	V3: RAG + Notebook Q&A Assistant
	Goals:
	Features:
	Why it matters:

	V4: Reporting & Automation Layer
	Goals:
	Features:

	V5 — Team Collaboration + Cloud Sync
	Goals:
	Features:

	V6 — Enterprise & Compliance
	Goals:
	Features:

	
	SECTION 12 — Metrics & Instrumentation
	North Star Metric
	Primary KPIs (Value & Adoption)
	1. Time-to-Reproduce Experiment
	2. Summary Usage Rate
	3. Active Sessions per User (7-day retention)

	Secondary KPIs (Quality & Accuracy)
	4. Summary Relevance Score (LLM-as-a-judge or manual rating)

	Guardrail KPIs (Performance & Experience)
	1. Notebook Slowdown Impact
	2. Summary Latency
	3. Error Rate (tracking failures, log corruption)

	
	SECTION 13 — Learnings & Reflection
	1. Hidden Pain Is Real Pain
	2. Adoption Beats Features
	3. Local-First Was the Right Bet
	4. LLM Value Is About Friction Removal, Not Magic
	5. Architecture Determines the Roadmap

