
TrackIT — AI-Powered Notebook Lineage & Experiment
Summaries

Role: Product · Research · UX · System Design · Applied ML

Reproducibility
Problems

Why This Problem Matters Now

AI teams are scaling =more
experiments than ever.

Experimentation
Volume Rising

 Most DS workflows
happen in Jupyter/Colab.

Notebook-First
Workflows Dominate

Feature engineering decisions
drive model outcomes.

Preprocessing Impacts
Model Quality

Notebook transformations
remain hard to trace

 No Tool Captures
Preprocessing

Lineage
Struggling to keep

track of experiments

Problem Statement

Losing Context
Across Sessions

Data scientists perform rapid preprocessing and feature engineering inside notebooks, but a
lack reliable record of how data was transformed across experiments.

Painful handoffs
when sharing

notebooks

Hard to track or
reproduce

experiments

Poor reproducibility
for audits / debugging

“Model metrics are tracked. Data transformations are not.”

User Research & Evidence
Research Approach

Mom Test–inspired qualitative discovery
Focused on behaviors, not solution validation

Consistent Patterns Across 40+ Comments

~70% reported losing track of preprocessing logic
2+ hours per experiment commonly lost retracing steps
Preprocessing changes rarely documented consistently
Reproducibility breaks when notebooks evolve or teams
collaborate
Nearly all users rely on fragile, manual workarounds

Users have tools for models and metrics — but not for preprocessing lineage.

*Sources: Reddit (r/MLQuestions, r/AskDataScience), Hacker News threads, Slack DS communities, Links in appendix.

Research Channels*

Reddit (r/MLQuestions, r/AskDataScience)
Hacker News (Ask HN / discussion threads)
Slack DS & ML communities
2 in-depth 1:1 interviews with practicing data scientists
Multiple channels reduced sampling bias and
strengthened signal confidence.

Observed Workarounds

Custom logging inside functions
MLflow notes used as pseudo-lineage
“final_v3 / final_final” script folders
Spreadsheets tracking experiments
SQL temp tables
YAML-based MLTable configs

Key Insights & Problem Themes

Insight 1 — Preprocessing logic is routinely lost
During rapid notebook experimentation, users frequently lose track of filtering, feature engineering, and transformation steps.

Insight 2 — Experimentation is fragmented and poorly documented
Notebook cells are overwritten, experiments re-run without context, and rationale for changes is rarely preserved.

Insight 3 — Reproducibility breaks down in collaborative settings
When notebooks evolve or multiple people contribute, teams struggle to reconstruct how datasets were produced.

Insight 4 — Existing tools leave a critical workflow gap
Tools like MLflow, Git, DVC, and Airflow track models or data versions, but not transformation-level lineage inside notebooks.

The core problem is not model tracking —
 it’s invisible data transformation during notebook experimentation.

Category Examples What They Track What They Don’t Track Gap Track IT Fills

Experiment Tracking MLflow, W&B Models, metrics Preprocessing lineage Notebook-first lineage

Data Versioning DVC, LakeFS Dataset snapshots Step-by-step transformations Transformation evolution

Orchestration Airflow, Prefect Pipelines, DAGs Ad-hoc experiments Early-stage exploration

Enterprise Lineage DataHub System flows Notebook logic Micro-level lineage

Market Gap / Existing Analysis

Existing tools optimize for production and governance — not for messy, exploratory notebook
workflows where preprocessing decisions are made.

Solution Exploration

Evaluation Criteria User Friction Value Delivery Technical Feasibility Scalability

Option C — Local Background Agent

Monitor notebook execution locally without workflow
changes.

 Best balance of value, feasibility, and adoption

Option A — Python Decorator Library

Wrap preprocessing functions with decorators to log
transformations.

 ❌ High friction, incomplete lineage

Option B — Custom Notebook IDE

Build a new notebook environment with built-in
lineage + LLM summaries.

 ❌ High effort, low adoption

Option D — Browser Extension

Intercept notebook UI events in the browser.

 ❌ Brittle, shallow lineage, Difficult to implement.

Option User Friction Value Feasibility Scalability Verdict

A: Decorators High Low High Medium ❌

B: Custom IDE High Medium Very Low High ❌

C: Background
Agent Low High Medium High MVP

D: Browser
Extension Medium Low Low Low ❌

Why Option C Was Chosen (MVP Decision)

Option C uniquely satisfies all four
criteria:

Zero workflow change (critical for adoption)
Captures true cell-level preprocessing
lineage
Feasible for a solo builder in 4–8 weeks
Forms a foundation for RAG, Q&A, and team
features

 MVP Definition
 MVP Value Hypothesis

Automatic lineage tracking and LLM summaries reduce cognitive load and help users reconstruct
experiments faster — without workflow changes.”

 MVP Definition

Notebook Discovery UI
Lists local notebooks
One-click tracking activation

Why: Low friction onboarding

Passive Notebook Tracking
Monitors execution and saves
Captures cell-level lineage automatically

Why: Zero workflow change (critical for
adoption)

Local-First Log Storage
Structured lineage stored locally
No data leaves the machine

Why: Trust, privacy

 LLM-Generated Summaries
Converts raw logs into readable narratives

Why: Validates insight + time savings

What the MVP Explicitly Does NOT Include

Excluded from MVP
Chat / Q&A
RAG pipelines
Multi-LLM routing
Vector databases
Collaboration / accounts
Report or PPT generation
Cloud sync
Guardrails & safety layers

Why This Scope Is Right
Validates desirability before scaling
complexity
Minimizes adoption friction and
engineering risk
Builds foundations for future AI features

Demo

Select a notebook for tracking

Start TrackIt and continue normal workflow

After processing, select a notebook for summary

Summary Generated by LLM

Has two options: AWS and Local Ollama

Technical Architecture

Frontend Dashboard

Backend

Logs Storage

Fast API

Tracker Script

AWS Bedrock

Success Metrics & Validation Signals

North Star Metric
Time Saved Reconstructing Past Experiments

Definition: Average reduction in time required for a user to understand or reproduce a previous preprocessing
workflow.
Why this metric: Directly measures whether TrackIT reduces cognitive load — the core value hypothesis.

1. Time-to-Reconstruction
Time required to explain or reproduce a past
experiment
Measured before vs. after using TrackIT
Signals direct productivity gains.

2. Summary Usefulness Score
User-rated clarity and completeness of LLM-
generated summaries
Simple 1–5 rating after viewing a summary
Validates whether the LLM adds real insight.

3. Lineage Coverage Rate
% of preprocessing steps automatically
captured per notebook session
Indicates quality and completeness of
tracking.

4. Repeat Usage
Do users generate summaries multiple times per
notebook?
Indicates perceived ongoing value
Proxy for retention in an early MVP.

Risk & Assumptions
Key Assumptions to Validate

Bucket 1: Problem Severity
Is lineage a burning pain or tolerated friction?
Frequency vs impact uncertainty

Bucket 2: Market & Monetization
Willingness to pay
Individual vs team buyer
Open-source vs SaaS

Bucket 3: Adoption & Behavior
Local agent setup friction
Silent demand vs small market
Collaboration vs solo workflows

Competitive Risks

Incumbents expand upstream
Manual workarounds persist
Market appears niche before expanding

Reflection and Learnings

Learning 1 — Hidden Pain Is Real Pain
Insight: Preprocessing chaos is normalized, not complained about.
Decision: I optimized for revealed behavior (lost time, workarounds), not loud requests.

Learning 2 — Adoption Beats Feature Richness
Insight: Every extra step (decorators, config, new IDEs) kills adoption.
Decision: I rejected “clean” but intrusive solutions in favor of a background agent.

Learning 3 — Local-First = Instant Trust
Insight: ML practitioners are highly sensitive to data privacy and control.
Decision: I designed TrackIT so no data leaves the machine by default.

Learning 4 — LLMs Win by Removing Cognitive Load
Insight: LLMs aren’t valuable because they’re “smart” — they’re valuable when they compress chaos.
Decision: I used LLMs for summarization, not prediction or automation.

Appendix A — Research Evidence

https://www.reddit.com/r/MLQuestions/comments/1odn6qp/data_scientists_ml_engineers_how_do_you_keep/

https://news.ycombinator.com/item?id=45676265#45676676

https://www.reddit.com/r/askdatascience/comments/1odn05i/data_scientists_ml_engineers_how_do_you_keep/

https://www.reddit.com/r/MLQuestions/comments/1odn6qp/data_scientists_ml_engineers_how_do_you_keep/
https://news.ycombinator.com/item?id=45676265#45676676
https://www.reddit.com/r/askdatascience/comments/1odn05i/data_scientists_ml_engineers_how_do_you_keep/

Links & Artifacts

Landing Page (demo + explanation)
https://track-it-land.vercel.app/

GitHub Repo (technical deep dive)
https://github.com/arjunm97/trackIT-Package

Portfolio Website
https://www.arjunportfolio.xyz/

Full Case Study
https://portfolio-assets-arch.s3.eu-west-2.amazonaws.com/trackIt/trackIt+longformat.pdf

