

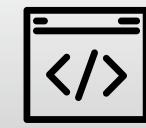
TrackIT — AI-Powered Notebook Lineage & Experiment Summaries

Role: Product · Research · UX · System Design · Applied ML

Why This Problem Matters Now

Experimentation Volume Rising

AI teams are scaling =more experiments than ever.



Notebook-First Workflows Dominate

Feature engineering decisions drive model outcomes.

Preprocessing Impacts Model Quality

Most DS workflows happen in Jupyter/Colab.

No Tool Captures Preprocessing Lineage

Notebook transformations remain hard to trace

Reproducibility Problems

Struggling to keep track of experiments

Problem Statement

Data scientists perform rapid preprocessing and feature engineering inside notebooks, but a lack reliable record of how data was transformed across experiments.

Losing Context
Across Sessions

Painful handoffs
when sharing
notebooks

Hard to track or
reproduce
experiments

Poor reproducibility
for audits / debugging

“Model metrics are tracked. Data transformations are not.”

User Research & Evidence

Research Approach

- Mom Test-inspired qualitative discovery
- Focused on behaviors, not solution validation

Consistent Patterns Across 40+ Comments

- ~70% reported losing track of preprocessing logic
- 2+ hours per experiment commonly lost retracing steps
- Preprocessing changes rarely documented consistently
- Reproducibility breaks when notebooks evolve or teams collaborate
- Nearly all users rely on fragile, manual workarounds

Research Channels*

- Reddit (r/MLQuestions, r/AskDataScience)
- Hacker News (Ask HN / discussion threads)
- Slack DS & ML communities
- 2 in-depth 1:1 interviews with practicing data scientists
- Multiple channels reduced sampling bias and strengthened signal confidence.

Observed Workarounds

- Custom logging inside functions
- MLflow notes used as pseudo-lineage
- "final_v3 / final_final" script folders
- Spreadsheets tracking experiments
- SQL temp tables
- YAML-based MLTable configs

Users have tools for models and metrics — but not for preprocessing lineage.

Key Insights & Problem Themes

Insight 1 — Preprocessing logic is routinely lost

During rapid notebook experimentation, users frequently lose track of filtering, feature engineering, and transformation steps.

Insight 2 — Experimentation is fragmented and poorly documented

Notebook cells are overwritten, experiments re-run without context, and rationale for changes is rarely preserved.

Insight 3 — Reproducibility breaks down in collaborative settings

When notebooks evolve or multiple people contribute, teams struggle to reconstruct how datasets were produced.

Insight 4 — Existing tools leave a critical workflow gap

Tools like MLflow, Git, DVC, and Airflow track models or data versions, but not transformation-level lineage inside notebooks.

*The core problem is not model tracking —
it's invisible data transformation during notebook experimentation.*

Market Gap / Existing Analysis

Existing tools optimize for production and governance — not for messy, exploratory notebook workflows where preprocessing decisions are made.

Category	Examples	What They Track	What They Don't Track	Gap Track IT Fills
Experiment Tracking	MLflow, W&B	Models, metrics	Preprocessing lineage	Notebook-first lineage
Data Versioning	DVC, LakeFS	Dataset snapshots	Step-by-step transformations	Transformation evolution
Orchestration	Airflow, Prefect	Pipelines, DAGs	Ad-hoc experiments	Early-stage exploration
Enterprise Lineage	DataHub	System flows	Notebook logic	Micro-level lineage

Solution Exploration

Evaluation Criteria

User Friction

Value Delivery

Technical Feasibility

Scalability

Option A — PythonDecoratorLibrary

Wrap preprocessing functions with decorators to log transformations.

✗ High friction, incomplete lineage

Option B — Custom Notebook IDE

Build a new notebook environment with built-in lineage + LLM summaries.

✗ High effort, low adoption

Option C — Local Background Agent

Monitor notebook execution locally without workflow changes.

Best balance of value, feasibility, and adoption

Option D — Browser Extension

Intercept notebook UI events in the browser.

✗ Brittle, shallow lineage, Difficult to implement.

Why Option C Was Chosen (MVP Decision)

Option	User Friction	Value	Feasibility	Scalability	Verdict
A: Decorators	High	Low	High	Medium	✗
B: Custom IDE	High	Medium	Very Low	High	✗
C: Background Agent	Low	High	Medium	High	MVP
D: Browser Extension	Medium	Low	Low	Low	✗

Option C uniquely satisfies all four criteria:

- Zero workflow change (critical for adoption)
- Captures true cell-level preprocessing lineage
- Feasible for a solo builder in 4–8 weeks
- Forms a foundation for RAG, Q&A, and team features

MVP Definition

MVP Value Hypothesis

Automatic lineage tracking and LLM summaries **reduce cognitive load and help users reconstruct experiments faster** — without workflow changes.”

MVP Definition

Notebook Discovery UI

- Lists local notebooks
- One-click tracking activation

Why: Low friction onboarding

Passive Notebook Tracking

- Monitors execution and saves
- Captures cell-level lineage automatically

Why: Zero workflow change (critical for adoption)

Local-First Log Storage

- Structured lineage stored locally
- No data leaves the machine

Why: Trust, privacy

LLM-Generated Summaries

- Converts raw logs into readable narratives

Why: Validates insight + time savings

What the MVP Explicitly Does NOT Include

Excluded from MVP

- Chat / Q&A
- RAG pipelines
- Multi-LLM routing
- Vector databases
- Collaboration / accounts
- Report or PPT generation
- Cloud sync
- Guardrails & safety layers

Why This Scope Is Right

- Validates desirability before scaling complexity
- Minimizes adoption friction and engineering risk
- Builds foundations for future AI features

Demo

Has two options: AWS and Local Ollama

Provider: AWS Bedrock

Idle

Trackit

Run notebooks · Generate summaries

Select a notebook for tracking

Run
Pick a notebook and Trackit.

Notebook: `plot_classifier_comparison.ipynb`

Run ▶ Stop

Refresh status

Start TrackIt and continue normal workflow

Current: No active run

Outputs
Choose a log and generate summary.

plot_classifier_comparison_io

Summarize with AWS Bedrock

After processing, select a notebook for summary

Activity

Lightweight stream of actions and assistant notes.
Provider: AWS Bedrock

- plot_classifier_comparison_io.log (AWS Bedrock)
- ✓ Summary generated from plot_classifier_comparison_io.log (AWS Bedrock)
- ✓ Summary generated from trackit3_run_1762522982.log (AWS Bedrock)
- ✓ Summary generated from plot_classifier_comparison_io.log (AWS Bedrock)
- ✓ Summary generated from plot_classifier_comparison_io.log (AWS Bedrock)

Ask something... Send

Summary

Readable output for quick scanning.

plot_classifier_comparison_io.log

Summary Report

Summary Generated by LLM

Notebook Path:
`/app/notebooks/plot_classifier_comparison.ipynb`

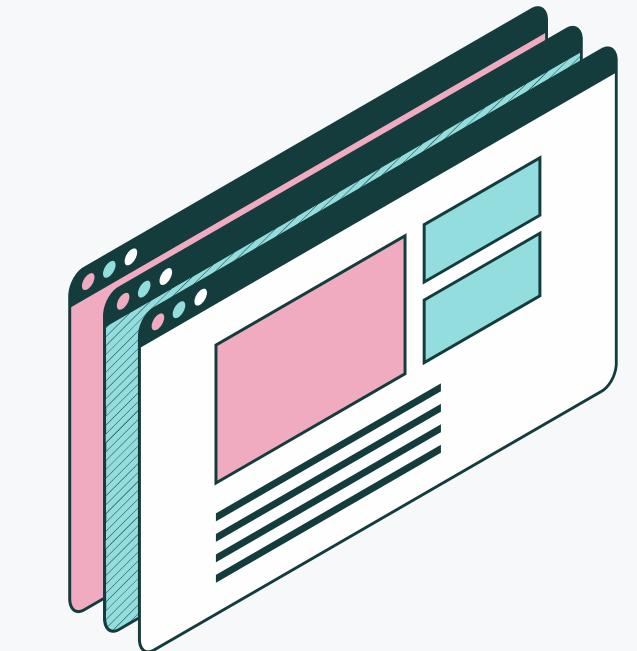
Notebook Modification Time: 2025-12-17T17:20:57.432184+00:00

Executed Cells: 1 (Cell Index 2)

Key Results and Outputs:

- * The executed cell (Cell Index 2) generated a plot comparing the performance of various classifiers on three different datasets.
- * The plot consists of 33 subplots, each showing the decision

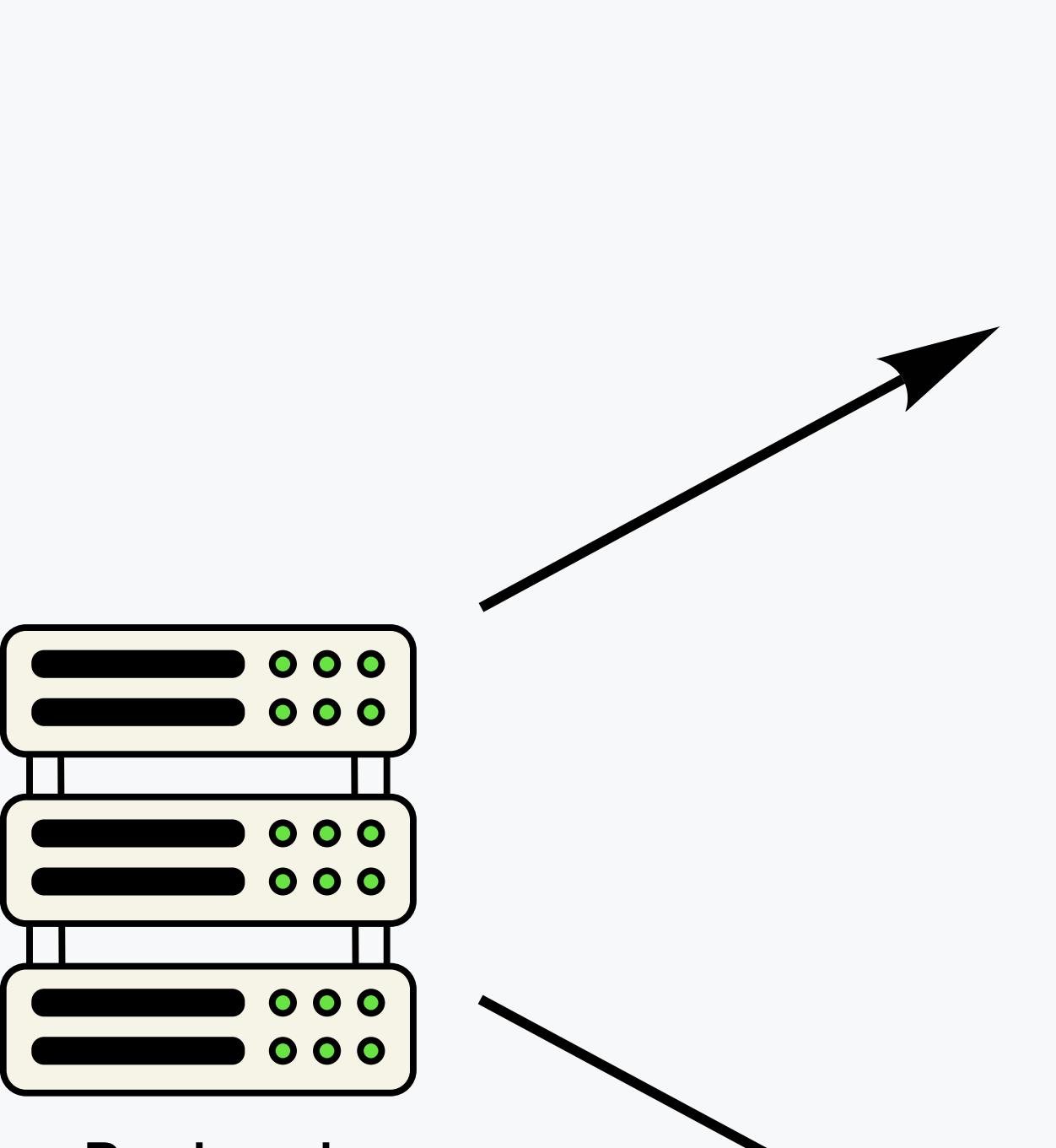
Technical Architecture



Frontend Dashboard



Fast API



Tracker Script

Logs Storage

AWS Bedrock

Success Metrics & Validation Signals

North Star Metric

Time Saved Reconstructing Past Experiments

- Definition: Average reduction in time required for a user to understand or reproduce a previous preprocessing workflow.
- Why this metric: Directly measures whether TrackIT reduces cognitive load — the core value hypothesis.

1. Time-to-Reconstruction

- Time required to explain or reproduce a past experiment
- Measured before vs. after using TrackIT
- Signals direct productivity gains.

2. Summary Usefulness Score

- User-rated clarity and completeness of LLM-generated summaries
- Simple 1–5 rating after viewing a summary
- Validates whether the LLM adds real insight.

3. Lineage Coverage Rate

- % of preprocessing steps automatically captured per notebook session
- Indicates quality and completeness of tracking.

4. Repeat Usage

- Do users generate summaries multiple times per notebook?
- Indicates perceived ongoing value
- Proxy for retention in an early MVP.

Risk & Assumptions

Key Assumptions to Validate

Bucket 1: Problem Severity

- Is lineage a burning pain or tolerated friction?
- Frequency vs impact uncertainty

Bucket 2: Market & Monetization

- Willingness to pay
- Individual vs team buyer
- Open-source vs SaaS

Bucket 3: Adoption & Behavior

- Local agent setup friction
- Silent demand vs small market
- Collaboration vs solo workflows

Competitive Risks

- Incumbents expand upstream
- Manual workarounds persist
- Market appears niche before expanding

Reflection and Learnings

Learning 1 — Hidden Pain Is Real Pain

Insight: Preprocessing chaos is normalized, not complained about.

Decision: I optimized for revealed behavior (lost time, workarounds), not loud requests.

Learning 2 — Adoption Beats Feature Richness

Insight: Every extra step (decorators, config, new IDEs) kills adoption.

Decision: I rejected “clean” but intrusive solutions in favor of a background agent.

Learning 3 — Local-First = Instant Trust

Insight: ML practitioners are highly sensitive to data privacy and control.

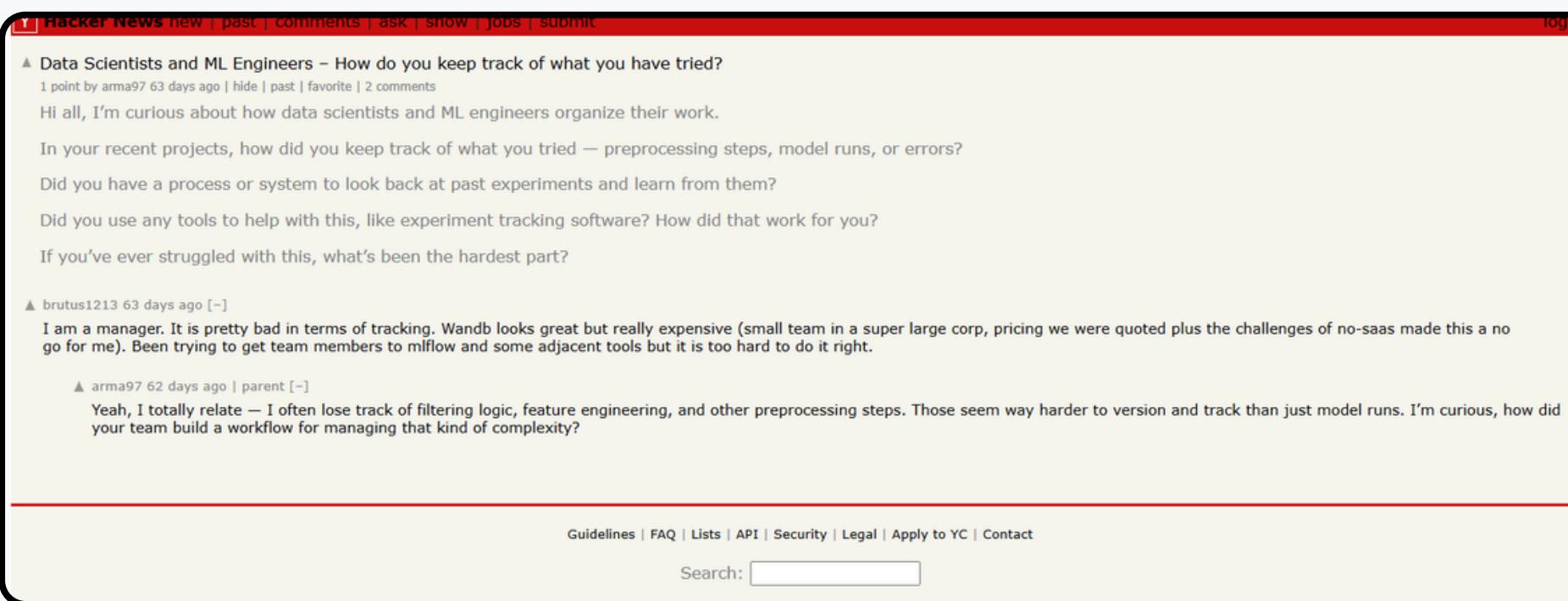
Decision: I designed TrackIT so no data leaves the machine by default.

Learning 4 — LLMs Win by Removing Cognitive Load

Insight: LLMs aren’t valuable because they’re “smart” — they’re valuable when they compress chaos.

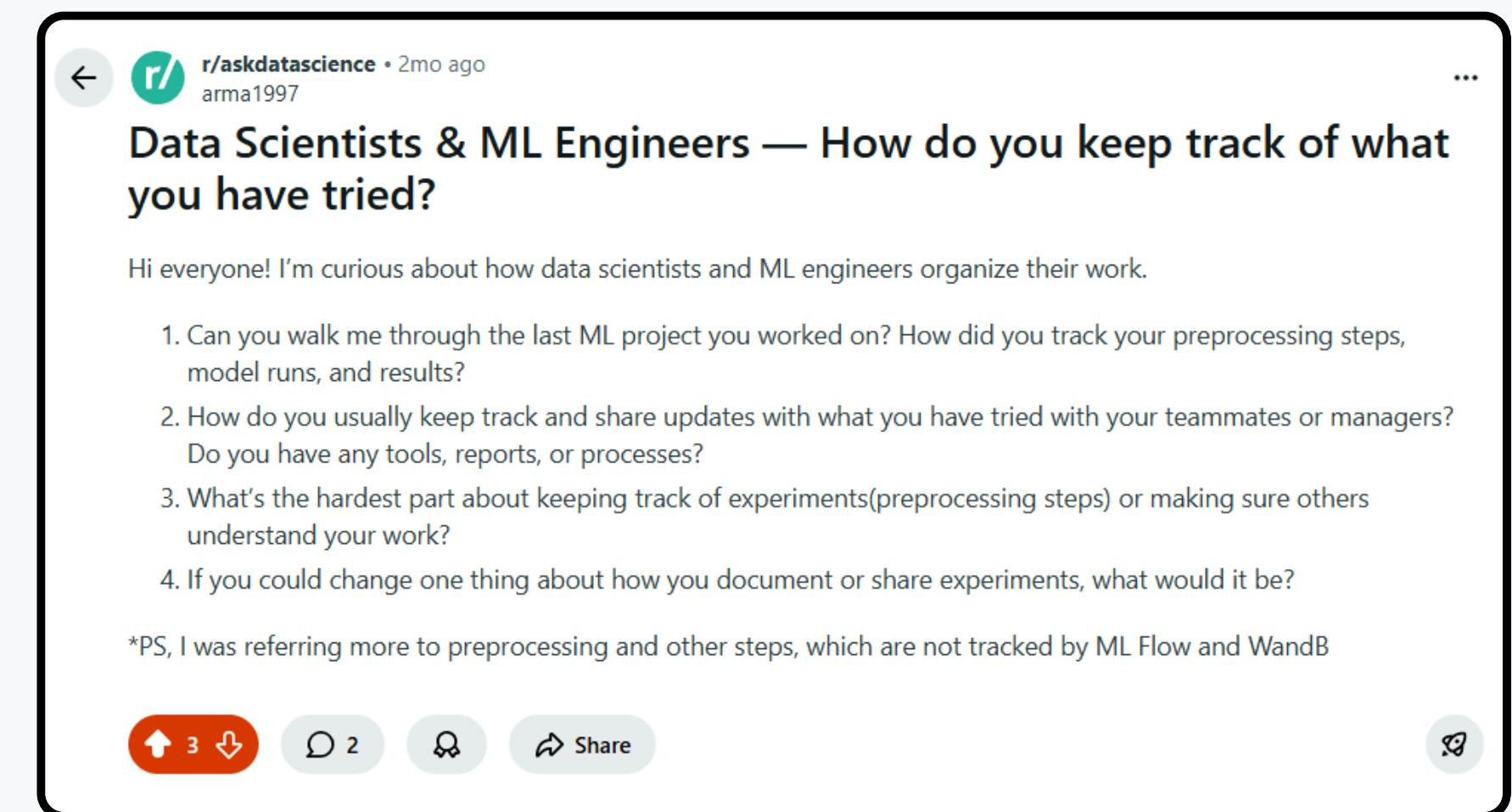
Decision: I used LLMs for summarization, not prediction or automation.

Appendix A — Research Evidence



A screenshot of a Hacker News post titled "Data Scientists and ML Engineers – How do you keep track of what you have tried?". The post has 1 point and was made 63 days ago by user arma97. The post content is a question and several follow-up comments from users brutus1213 and arma97. The comments discuss the challenges of tracking experiments, mentioning tools like Wandb and ML Flow. The post has a "Search" bar and a "Guidelines" link at the bottom.

<https://news.ycombinator.com/item?id=45676265#45676676>

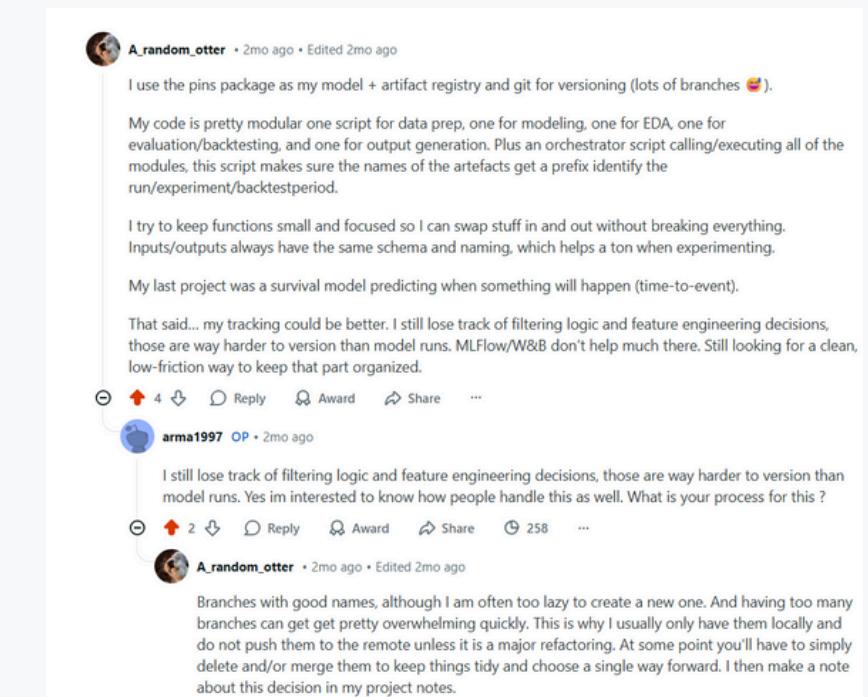


A screenshot of a Reddit post on the r/askdatascience subreddit titled "Data Scientists & ML Engineers — How do you keep track of what you have tried?". The post was made 2 months ago by user arma1997. The post content is a question and several follow-up comments from users arma97 and brutus1213. The comments discuss the challenges of tracking experiments, mentioning tools like Wandb and ML Flow. The post has upvote, comment, and share buttons at the bottom.

https://www.reddit.com/r/askdatascience/comments/1odn05i/data_scientists_ml_engineers_how_do_you_keep/

https://www.reddit.com/r/askdatascience/comments/1odn05i/data_scientists_ml_engineers_how_do_you_keep/

You've been blocked by network security.



A screenshot of a Reddit post on the r/MLQuestions subreddit titled "Data Scientists & ML Engineers — How do you keep track of what you have tried?". The post was made 2 months ago by user arma1997. The post content is a question and several follow-up comments from users A_random_otter and arma1997. The comments discuss the challenges of tracking experiments, mentioning tools like Wandb and ML Flow. The post has upvote, comment, and share buttons at the bottom.

https://www.reddit.com/r/MLQuestions/comments/1odn6qp/data_scientists_ml_engineers_how_do_you_keep/

Links & Artifacts

Landing Page (demo + explanation)

<https://track-it-land.vercel.app/>

GitHub Repo (technical deep dive)

<https://github.com/arjunm97/trackIT-Package>

Portfolio Website

<https://www.arjunportfolio.xyz/>

Full Case Study

<https://portfolio-assets-arch.s3.eu-west-2.amazonaws.com/trackIt/trackIt+longformat.pdf>